Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.104$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(7S)- N-(4-Phenyltricyclo[4.2.1.0 ${ }^{2,5}$]non-3-ene-3-carbonyl)-2,10-camphorsultam

The regio- and absolute stereochemistry of the title compound, $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}$, has been established by X-ray analysis. The molecular dimensions are in the normal range. In the crystal structure, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link molecules, related by 2_{1} screw axes, into extended tapes in the b-axis direction.

Comment

Recently, we reported the first examples of asymmetric ruthenium-catalyzed [2+2]-cycloadditions between bicyclic alkenes and a chiral acetylenic acyl sultam (Villeneuve \& Tam, 2004). Two different diastereoisomers could be formed in the cycloadditions. When norbornene was used as the bicyclic alkene component and phenyl-acetylene-acyl camphorsultam was used as the alkyne component, two diastereoisomers were obtained in a 131:1 ratio. These diastereoisomers were separated by fractional recystallization. The absolute stereochemistry of the major isomer, (I), was established by the single-crystal X-ray diffraction analysis described here.

(I)

A view of the title compound is shown in Fig. 1. The structure determination establishes the absolute configuration of the following atoms in Fig. 1: C2-S, C5-R, C8-R, C14-S, C15-R, C18-S and C19-R. The molecular dimensions, a selection of which are listed in Table 1, are in the normal range. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, the geometric details of which are given in Table 2, link molecules, related by 2_{1} screw axes, into extended tapes in the \mathbf{b} direction (Fig. 2). The hydrogenbonding motif consists of two main graph-set descriptors (Bernstein et al., 1995); $\mathrm{C}(6)$ chains are formed via the $\mathrm{C} 1-$ $\mathrm{H} 1 B \cdots \mathrm{O} 3^{\mathrm{i}}$ [symmetry code: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$] interactions and $S_{2}^{1}(6)$ rings are fromed through the $\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\mathrm{ii}}$ and $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1^{1 i}$ [symmetry code: (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$] interactions. Both of these interactions propagate along the same 2_{1} screw axes, but in opposite directions with respect to the polarity of the $\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\mathrm{i}}$ hydrogen bond.

Experimental

Addition of norbornene and (S)-phenyl-acetylene-acyl camphorsultam to $\mathrm{Cp} * \mathrm{RuCl}($ cyclooctadiene) in tetrahydrofuran at 298 K
provided two diastereoisomers in a 131:1 ratio. Fractional recystallization in hexanes provided the major diastereoisomer, (I). Suitable crystals were grown from hexanes.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=437.58$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.2089$ (1) \AA 。
$b=11.6317$ (2) \AA
$c=26.3219$ (5) \AA
$V=2207.14(6) \AA^{3}$
$Z=4$
$D_{x}=1.317 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.921, T_{\text {max }}=0.963$
18496 measured reflections
4876 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
4876 reflections
281 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0524 P)^{2}\right.$
$+0.0897 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-N1	$1.6921(17)$	C12-C13	$1.364(3)$
S1-C1	$1.7885(19)$	C12-C19	$1.517(3)$
N1-C11	$1.407(2)$	C13-C14	$1.516(3)$
N1-C8	$1.486(2)$	C14-C19	$1.573(3)$
O2-S1-O1	$117.76(12)$	C12-C13-C14	$93.26(15)$
N1-S1-C1	$95.61(9)$	C13-C14-C19	$86.69(13)$
C11-N1-C8	$116.39(15)$	C12-C19-C14	$85.40(13)$
C13-C12-C19	$94.63(14)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.41	$3.361(3)$	161
$\mathrm{C}^{\mathrm{ii}}-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.51	$3.377(3)$	146
$\mathrm{C}^{\mathrm{Hi}} \mathrm{H} 8 A \cdots \mathrm{O}^{1}$	1.00	2.50	$3.425(2)$	153

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $1.00 \AA$, and included in the refinement in a riding-model approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})\left(1.5 U_{\mathrm{eq}}\right.$ for methyl).

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
View of the molecule of (I), showing the crystallographic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Packing diagram (Spek, 2004) showing weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines. S atoms are shown in green, O atoms in red, and N atoms in blue. All H atoms except $\mathrm{H} 1 B, \mathrm{H} 3 B$ and $\mathrm{H} 8 A$ have been omitted for clarity

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2004). PLATON. University of Utrecht, The Netherlands.
Villeneuve, K. \& Tam, W. (2004). Angew. Chem. Int. Ed. 43, 610-613.

